

Heidelberg Retina Tomograph (HRT)

Ramin Daneshvar, M.D. Feb 2010

Incidence of Primary Open-Angle Glaucoma

- Affects >2 million over the age of 40 in the US (1.9%); expected to exceed 3 million by 2020 ¹
- Average age of onset 54 years of age ²
- Most patients (63%) have had glaucoma >10 years²
- 2nd leading cause of blindness 3

Under Diagnosis of Glaucoma

- Population studies suggest over half of all glaucoma cases in the US have not been diagnosed.
- Percentage of patients with undiagnosed glaucoma
 - Baltimore Eye Survey: 56% ¹
 - Proyecto VER: 62% ²
- Many suffer severe Visual Field loss before diagnosis.³

5 Disc Classifications

Frequency of Glaucoma Disc Types

MASSIM

Mixed Glaucoma

Only 7% of patients have pure optic disc types

optic discs with mixed appearance and two morphologic components

Multifactorial Glaucoma

- POAG develops in a multifactorial manner.
- There is huge diversity in the appearance of both the normal and the diseased disc.
- Early changes in the optic disc are subtle.
- May occur within the range of normal diversity.
- May be missed without careful serial examinations of the individual's disc.

AIGS Consensus Redefines Glaucoma

The committee on evidencebased glaucoma of the AIGS Consensus Meeting has proposed:

"Progressive Structural Optic Nerve Damage"

as the NEW "Gold Standard".

MA A SUM

AIGS* Consensus

- HRT discriminates
 glaucomatous from normal optic
 discs in a clinical setting at least
 as well as experts evaluating
 optic disc photographs.
- Should be considered when such expert advice is not available.

History of Glaucoma Diagnosis

- Pre 1980
 - Elevated IOP
- **1**980 2000
 - Elevated IOP + visual field (VF) defect
- **2000 present**
 - Elevated IOP + visual field (VF) + Optic disc (ONH) + retinal nerve fiber layer (RNFL)

Glaucoma Diagnosis in Clinical Practice

- Traditionally based on:
 - Intraocular Pressure (IOP)
 - Visual Fields (VF)
 - Subjective Assessment of the Optic Disc (ON)

IOP

- Benefits:
 - Rapid and convenient
- Limitations:

- Large overlap between healthy and glaucoma eyes¹
- Corneal thickness affects accuracy²
- IOP fluctuates³
- IOP damage threshold varies
 - Ocular hypertensives (OHT)
 - Normal tension glaucoma (NTG)

Visual Fields

- Benefits:
 - Provides functional assessment of damage.
 - Progression can be monitored.
- Limitations:
 - Subjective.
 - High variability.
 - Poor sensitivity for early detection.

Subjective Optic Disc Assessment

Benefits:

- Convenient.
- 3-D evaluation (Slit Lamp Biomicroscopy).

- Subjective.
- Requires pupil dilation.
- Baseline drawing may be inaccurate.
- Difficult to detect change.

Optic Disc Photographs

- The current "Gold Standard" for optic disc assessment is stereo fundus photography.
- But in US only 40% of general ophthalmologists make follow-up optic nerve assessment and optic nerve head documentation.¹

Subjective Disc Assessment with Photography

Benefits:

- Documents the appearance of the optic nerve head.
- Allows detailed study of the optic disc.

Limitations:

- Requires clear media, dilated pupil, and skilled photographer.
- Poor agreement in interpretation, even among experts.¹²
- Progression missed up to 50% of the time by experts.³
- Time consuming.
- Not cost-effective in today's busy clinic?

OHTS: Optic Disc Change is the Primary Indicator

- OHTS reports 55% of subjects reached endpoint (POAG) based on changes in the optic disc only.
- A further 10% of subjects had concurrent optic disc and visual fields changes.
- Only 35% of glaucoma was found by visual field changes.

Confirms HRT Longitudinal Studies

OHTS ancillary study: Hazard Ratios

Table 3. Univariate and Multivariate Hazard Ratios and 95% Confidence Intervals (CIs) for the Development of POAG (Average of the Eyes)

	Hazard Rat	Hazard Ratio (95% CI)		
	Univariate	Multivariate*		
CSLO measures				
Disc area (per 0.4 mm² greater)	0.84 (0.58-1.20)	0.86 (0.57-1.30)		
Cup area (per 0.3 mm² greater)	1.22 (0.96-1.55)	1.21 (0.96-1.53)		
Cup area-to-disc area (per 0.1 greater)	1.23 (1.00-1.50)	1.25 (1.02-1.53)		
Mean cup depth (per 0.1 mm greater)	1.58 (1.14-2.20)	1.60 (1.15-2.22)		
RNFL thickness (per 0.1 mm greater)	0.60 (0.34-1.06)	0.66 (0.35-1.23)		
Standard deviation of mean image (per 6 µm greater)	1.15 (0.92-1.43)	1.04 (0.80-1.37)		
Cup shape (per 0.1 greater)	1.24 (0.78-1.97)	1.02 (0.62-1.67)		
Cup volume below surface (per 0.1 mm ³ greater)	1.11 (0.96-1.28)	1.10 (0.97-1.25)		
Rim area (per 0.2 greater)	0.58 (0.43-0.79)	0.57 (0.42-0.78)		
Rim area/disc area (per 0.1 greater)	0.75 (0.60-0.94)	0.76 (0.62-0.93)		
Reference height (per 0.1 mm greater)	1.42 (1.04-1.93)	1.49 (1.03-2.17)		
Corneal curvature (per 0.2 mm greater)	1.16 (0.90-1.49)	1.03 (0.79-1.36)		
RNFL cross-section (per 0.3 mm ² greater)	0.68 (0.49-0.95)	0.72 (0.48-1.06)		
Mean height contour (per 0.1 mm greater)	2.59 (1.69-3.98)	2.69 (1.62-4.49)		
Rim volume above reference (per 0.1 mm ³ greater)	0.63 (0.45-0.87)	0.65 (0.47-0.91)		
Cup volume below reference (per 0.1 mm ³ greater)	1.24 (1.02-1.52)	1.20 (1.01-1.43)		
HRT classification 1 (per 1 unit greater)	0.72 (0.59-0.89)	0.75 (0.62-0.92)		

Table 3. Univariate and Multivariate Hazard Ratios and 95% Confidence Intervals (CIs) for the Development of POAG (Average of the Eyes) (cont)

	Hazard Ratio (95% CI)			
	Univariate	Multivariate*		
CSLO indexes				
HRT classification, outside normal limits vs within normal limits	2.47 (1.31-4.65)	2.54 (1.31-4.90)		
MRA (outside normal limits vs within normal limits)				
Overall	2.72 (1.19-6.21)	2.39 (1.02-5.62)		
Global	5.64 (1.94-16.44)	3.37 (1.13-9.99)		
Nasal	1.99 (0.74-5.37)	1.59 (0.48-5.24)		
Nasal inferior	4.44 (1.77-11.12)	4.19 (1.61-10.91)		
Nasal superior	1.97 (0.43-8.96)	0.72 (0.11-4.63)		
Temporal	3.28 (0.82-13.18)	2.48 (0.66-9.22)		
Temporal inferior	5.02 (1.53-16.51)	5.80 (1.60-21.00)		
Temporal superior	8.88 (2.58-30.56)	3.28 (0.98-10.98)		
OHTS predictive factors				
Age (per decade)	1.27 (0.92-1.76)	NA		
History of heart disease	4.25 (1.63-11.08)	NA		
IOP (per mm Hg)	1.11 (0.99-1.23)	NA		
CCT (per 40 µm thinner)	2.14 (1.44-3.18)	NA		
PSD (per 0.2 dB greater)	1.15 (0.93-1.43)	NA		
Horizontal cup-disc ratio (per 0.1 larger)	1.27 (1.09-1.49)	NA		
Vertical cup-disc ratio (per 0.1 larger)	1.40 (1.16-1.68)	NA		

Abbreviations: CCT, central corneal thickness; CSLO, confocal scanning laser ophthalmoscopy; HRT, Heidelberg Retina Tomograph; IOP, intraocular pressure; MRA, Moorfields Regression Analysis; NA, not applicable; OHTS, Ocular Hypertension Treatment Study; POAG, primary open-angle glaucoma; PSD, pattern standard deviation; RNFL, retinal nerve fiber layer.

*Multivariate model contains baseline age, IOP, PSD, CCT, and history of heart disease, with medication status as a time-dependent covariate. One hundred twelve eyes were excluded from the multivariate analyses because of missing CCT values. Temporal MRA classifications have highest predictive value!

OHTS ancillary study: HRT Predicts Glaucoma

- The latest OHTS Ancillary Study shows:
 - HRT (MRA; Moorfields Regression Analysis) is a top predictive factor for glaucoma.
 - HRT can identify those patients at high risk for developing the disease.

Evidence-Based Glaucoma diagnosis

- The HRT has been clinically proven for:
 - 1. Progression. 1,2,3,4,
 - 2. Diagnostic Accuracy approx. 90%. 6,7,8
 - 3. Reproducibility.
 - 4. Correlation with Visual Fields. 12,13
 - Correlation with RNFL histology.
 - 6. RNFL thickness measurements (AROC > .90).
 - 7. Equal or better than Stereo Disc Photography.
 - 8. Predicts Visual Fields. 18,19,20

Tomographic Identification of Neuroretinal Rim Loss in High-Pressure, Normal-Pressure, and Suspected Glaucoma

James C. H. Tan. Darmalingum Poincosaumry, and Roger A. Hitchin.

Names. It is identify progressive reals to an all sever the game of realization of a few regards along an instead of a regarded stage in a transaction of a few regards of a few realization of a few regards. A periodic described multiple along with a real in the SIA Che mingra of α building frequently were more in the SIA Che mingra of α DAG COII Convertee, α = 20, an animatic normal part of the properties of the size of α and α and

Coscusions. There were summarities and differences in the pattern of rin loss in SLT dic images of High- and normal pressure presentations of glucoma. Progressive fin loss we detected in eyes without visual field defects, eyes that processed to develop field defects, and eyes with established an more sever glucoma. (Intend Ophthulmol Vir Sci. 2004;45: 2279–2288) DOI:10.1167/iovs.03-1243

Obern described quite extensively by optic disc photon phys-1 but not as much by the newer technique of season have tomography. Unlike disc photography, 5° scanning Is tomography data are reproducible 5° and amenable to obtain

From Morelicido Tipe Hospital, Lettodori, Unived Kingdoto, Supported by the Plennocs and Berne Hock Trust, Montfields Hospital, and the International Glascoton Association, London, Uni Kingdom (CRIT). Submitted for publication November 14, 2005; revised January 2004, accepted February 9, 2004.

2001 accepted February 9, 2004.
Dackonner, J.G.H. Tali, None; D. Polinfossiwany, None; III.A. Hindridge, None
The politication costs of this article were deflayed in part by packed charge payment. This article must therefore be marked "distribution owner" in accordance with IR USG. 5/134 solely to infinite the line of Corropositing univer. Boger A. Hischings, Research and Devel payment, Morrishids by the Hogging, Care Road, Linching EU/12/19, USG.

roger Intechniga@insocitieds.intra.uk.

Insocitation Calabindandour & Vasual Science, Info Print Vol. 48, No. 1

is tive and quantitative analysis in a way that could be useful

detering glaceman progression."

In this knew mostly breen in year with confus progression to develop what first beautiful progressing to develop what first beautiful progression to develop what first beautiful progression provincing to precionalized by the granular proprieties reversible of generalized expansion or vertical engagement of the granular progression of the granular progression

Concerning the pattern of glascomators optic disc class seem in scanning laser consequency, two longitudias six are notable. Kimale et al. 2 examined OHT and OHT cost or 2" disc images, and suggested a preponderance of change the superior and inferior regions of the fin and cup. Burgo et al." analyzed disc images of monkeys with experimenglatorous and sherifiled ventical capables entito and tempal superior perspellary retaind heights to useful region and superior perspellary retaind heights to useful region.

parameters for modeling change.

We have described an analytical approach for identify sequential rin loss in scanning laser tomography that appear eliable enough to distinguish eyes with glancoma progression unchanging eyes. (3.1) By analyzing rim loss sector sector, regional patterns of change within the optic dec case defentited. Based on this, we wendered whether, and in we feet the contract of the contract

5: the disease could be identified by scanning laser tomograps.
We assessed iongization opini dis irrage series of peristion of the control of the control opinion of the control opinion of the control opinion opinioni opinioni opinioni opinioni opinioni opinioni opinioni opinioni opi

METHODS Criteria for selection Subi

be analytical approach was sented bilanerally in OHT subjects, bilattally in anytainentic NYG subjects, the eye that "controvine" in OHT storetters to POAG, and unlaterally in sortical control subjects. The state OHT converters and tectual control subjects had breet used in a revious publishinists to test OHT to delively the analytical approach. If

rectices and notical control subjects had been used in a catalon to take the destroy like analysical approach, ¹⁷ deel cither the ocular hypertension and early glancome, sourc glaucome research cities as Moorfields fiye Hoops

1) Chauhan et al., Arch Ophthalmol. 2001; 119: 1492. 2) Kamal et al., Br J Ophthalmol. 1999; 83: 290. 3) Tan, Poinoosawmy and Hitchings IOVS 2004; 45: 2279. 4) Bowd et al., IOVS 2004; 45:2255. 5) Tan and Hitchings IOVS 2003; 44:2621. 6) Swindale et al., IOVS 2000; 41: 1730. 7) Bowd et al., IOVS 2002; 43: 3444. 8) Zangwill et al., IOVS 2004; 45: 3144. 9) Chauhan et al., AM J Ophthalmol. 1994; 118: 9. 10) Weinreb et al., Arch Ophthalmol 1993; 111: 636. 11) Rohrschneider et al., Ophthalmology 1994; 101: 1044. 12) Iester et al., J Glaucoma 1997; 6: 78. 13) Tsai et al., J Glaucoma 1995; 4:110. 14) Yucel et al., Arch Ophthalmol. 1998; 116: 493. 15) Zangwill et al., IOVS 2004; 45: 3144. 16) Zangwill et al. Am J Ophthalmol. 2004; 137:219-227. 17) Wollstein et al. Ophthalmology 2000; 107:2272-2277. 18) Bowd et al., IOVS 2004; 45:2255. 19) Kamal et al., Br J Ophthalmol. 1999; 83: 290. 20) Tan and Hitchings IOVS 2003; 44:2621.

HRT Image Acquisition and Image Quality

HLL3

Confocal Principle

Confocal Principle

HRT II Acquisition and Signal Processing

147.456 individual local surface height measurements
147.456 local variability
measures
147.456 individual local surface reflectance measurements

three automatic image series

three topography images

mean topography image

Inconsistent Eye Data

C-Curve = **7.7**

C-Curve = 7.1(same eye)

		OD		os		
C-Curve * [mm]:	7.1			7.1	- 1	OK
Refraction [dpt]:	4					Cance
Cylinder [dpt]:	-2.2	25		0	-	More
Axis [deg]:	90			0		more
Corrective Lens* — As	tigmatic co	rrection hig	hly rec	ommende	ed!	
Astigmatic Lens * [dpt]:	▼ -2.0) 🔻	V	None	Ī	
Glasses * [dpt];			П	0		
Contact Lens * [dpt]:			Г	0		
				-		

- Focused laser beam
- Sequential scanning on two dimensions
- Confocal pinhole
- Suppression of out-of-focus light
- Depth resolution
- Optical section images

Three Dimensional Imaging

- Series of optical section images at different locations
- Layer-by Layer three dimensional image
- Laser scanning tomography
- Similar to CT Scan technology

3 Separate Image Series Acquired

Inconsistent Eye Data

Parameters	global	Parameters	global
disc area [mm²]	2.44	disc area [mm²]	2.25
cup area [mm²]	0.94	cup area [mm²]	0.86
rim area [mm²]	1.50	rim area (mm²)	1.39
cup/disc area ratio []	0.39	cup/disc area ratio []	0.38
rim/disc area ratio []	0.61	rim/disc area ratio []	0.62
cup volume [mm³]	0.34	cup volume [mm³]	0.28
rim volume [mm³]	0.23	(rim volume (mm²)	0.20
mean cup depth [mm]	0.31	mean cup depth [mm]	0.28
maximum cup depth [mm]	0.67	maximum cup depth [mm]	0.61
height variation contour [mm]	0.19	Weight veriation contour [mm]	0.17
cup shape measure []	-0.07	cup shape measure []	-0.06
mean RNFL thickness [mm]	0.16	roger: RMF5 //hickness [mm]	0.15
RNFL cross sectional area [mm²]	0.87	RNFL cross sectional area [mm²]	0.79
linear cup/disc ratio []	0.62	linear cup/disc ratio []	0.62
maximum contour elevation [mm]	-0.06	maximum contour elevation [mm]	-0.05
maximum contour depression [mm]	0.13	maximum contour depression [mm]	0.12
CLM temporal-superior [mm]	0.15	CLM temporal-superior [mm]	0.14
CLM temporal-inferior [mm]	0.06	CLM temporal-inferior [mm]	0.05
average variability (SD) [μm]	17	average variability (SD) [μm]	16
reference height [µm]	178	reference height [µm]	168
FSM discriminant function value []	-0.19	FSM discriminant function value []	-0.42
RB discriminant function value []	-0.03	RB discriminant function value []	-0.10
modified ISNT rule fulfilled	no	modified ISNT rule fulfilled	no

C-Curve = 8.2

C-Curve = 7.7 (same eye)

Image Acquisition Details

- Resolution
 - 16 optical sections per 1 mm scan depth
 - 384x384 pixels over 15 x 15 degrees (~ 4.4mm at 0 dpt)
- Acquisition time
 - 2 mm scan ~1 second
 - 4 mm scan ~2 seconds
- Automatic quality control
 - discards unusable series (blinking, lost fixation,...)
 - acquires additional series automatically

Three-Dimensional Imaging

 Series of optical section images at different locations of the ONH

Retinal Surface Height Measurement

Z(x,y) = matrix of 384x384 = 147,456local surface height measurements

Topography Image

matrix of 384 x 384 = 147,456 local surface height measurements

- topography image
- color coded
- color = height

Reflectance Image

 $R(x,y) = matrix ext{ of}$ 384x384 = 147,456local surface reflectance measurements

Reflectance Image

color coding
low high

matrix of 384 x 384 = 147,456 local surface reflectance measurements

- reflectance image
- color coded
- color = reflectance

Wrong Focus – Over Exposure

Uncorrected astigmatism

Double vessels - fixation loss

Movement

Scleral ring

Peripapillary Atrophy (PPA)

Floaters

Good image = good data

How to draw the Contour Line

The Reference Plane

Reference plane...

...is located 50 µm below the mean height of the retinal surface along the contour line, between 350°-356° (papillo-macular bundle).

(Burk, Graefe's Arch. Clin. Exp. Ophthalmol. 2000, 238:375–384)

Standard Reference Plane

- Location of the reference plane specifies which Areas within the contour line are assigned to the optic nerve head cup and which areas are assigned to the neuro-retinal rim
- Reference plane:
 - * 50 micron below retinal surface at papillomacular bundle located 350 356
- Structure below reference plane: Cup
- Structure above reference plane: Rim

- Selected location based on research
- Bundle which remains intact through disease progression
- Average thickness of papillo-macular bundle located 350 356 found to be 50 micron

ONH Stereometric Analysis

- The contour line is only drawn once for each eye.
- Automatically transferred to all follow-up exams.
- Changes of the contour line in one exam are automatically transferred to all other images of the eye.

Detecting SMALL changes

- 1. High quality baseline image.
- 2. Low test-retest variability.

Final Check List

Important: Consistent eye data values for C-Curve, Astigmatism Lens, Glasses or Contact Lens !!!

Exam-Info		
OD Corrective Lens		Scan parameters
*Astigmatic Lens [dpt]:		Exam date: 15.04.2002 17:09:27
*Glasses [dpt]: *Contact Lens [dpt]: Contact Lens Type:		Scan angle: 15° Scan focus: 1.00 dpt Scan depth: 3.00 mm (48 images) Sensitivity: 72%
Eye parameters *C-Curve [mm]:	6.2	Operator: tt
Refraction [dpt]: Cylinder [dpt]: Axis [deg]: Pupil size [mm]: IOP [mmHg]: VFieldMean: VFieldVar:	1 -0.5 175 0 0 0	ОК

How to Interpret the Baseline Exam

Image Quality: Standard Deviation

< 10 µm excellent 10-20 µm very good 20-30 µm good 30-40 µm acceptable 40-50 µm try to improve > 50 µm poor quality, documentation only

Contour Line

Contour Lines, drawn by OPERATOR

Color Coded Overly TOPOGRAPHY IMAGE

RED = CUP

GREEN = STABLE

BLUE = SLOPING

WHITE: INCORRECT CONTOUR LINE

Reflection Image

- The optic nerve divided into 6 sectors
- These sectors are compared to a normal database and then classified
- Depending on this patient's age and overall disc size the eye is then statistically classified as " *Within Normal Limits*", "*Borderline*", "*Outside Normal Limits*"

Within Normal Limits

Borderline

Outside Normal Limits

Stereometric Parameters - Cup Area

Area enclosed by the contour line and located beneath the reference plane.

The cup is displayed in red.

Stereometric Parameters - Rim Area

Area enclosed by the contour line and located above the reference plane. The rim is displayed in green (stable) and blue (sloping).

OD

Stereometric Parameters

Parameters	global	temporal	tmp/sup	tmp/inf	nasal	ns//sup	n	sVinf	
disc area [mm²]	1.795	0.438	0.233	0.230					
cup area [mm²]	0.533	0.222	0.076	0.052					<u></u>
rim area [mm²]	1.263	0.217	0.157	0.177	Heidelberg Retina Tomograph Initial Report				E
cup/disc area ratio []	0.297	0.506	0.328	0.227	Patient:	Glaucoma, low tension,			
rim/disc area ratio []	0.703	0.494	0.672	0.773	Examination:	Sex: female DOB: 01/s Date: 08/Feb/2002	Jan/1954 Pat-ID:	-	
cup volume [mm³]	0.112	0.035	0.019	0.010	Scan:	Focus: 0.00 dpt Depth:	3.00 mm Operator	r:tt IOP:	
rim volume [mm³]	0.295	0.017	0.028	0.045		x [mm]	z (mn	m]	×
mean cup depth [mm]	0.218	0.214	0.256	0.200		1.2 1.6 2.0 2.4 2.8 3.2	3.6 -0.4 0.0 0.4	0.8 1.2 0.0 0.4	0.8 1.2 1.6
maximum cup depth [mm]	0.660	0.550	0.624	0.585	0.4 -]		
height variation contour [mm]	0.473	0.134	0.166	0.278	1.2			-	-
cup shape measure []	-0.227	-0.148	-0.103	-0.210	₽ ^{1.6}			, I	
mean RNFL thickness [mm]	0.260	0.080	0.227	0.328	E _{>} 2.0 -				1
RNFL cross sectional area [mm²]	1 234	0.093	0.137	0.197	2.8				
linear cup/disc ratio []	0.545				3.2				- 4
maximum contour elevation [mm]	-0.137		12	12	3.6			-	and the same
maximum contour depression [mm]	0.336		-	-	0.0		1.0 10	0 = 0 0	N G N
CLM temporal-superior [mm]	0.147	22.2	348	343	(m) 0.4	W			
CLM temporal-inferior [mm]	0.248	-		-	1.2				
average variability (SD) [mm]	0.036		8.48	8.40	0.0 0.4 0.8	1.2 1.6 2.0 2.4 2.8 3.2	3.6 0 45	90 135 1	180 225
reference height [mm]	0.381		-			x [mm]		ang	gle [*]
FSM discriminant function value []	0.070	-			Stereom	etric Analysis ONH	Normal Range	predicted (ren2)	11
RB discriminant function value []	1.443						1.69 - 2.82 0.26 - 1.27	Low M.Os.	
0.000 0.000	200000					up/Disc Area Ratio 0.297	0.16 - 0.47	Moorfields Classification: \(\bar{\gamma}\) (Sphineporability)	

Global and sectorial parameters automatically calculated.

	2.4 2.8 3.2	36 -04 00	04 08	12 (0.0 0.4	0.8 1	2 16	20 24	
0.4						1	V	1	
		1							
0.8		4						100	
1.2 -		3			.08	- 3	ж.		1/100
-1.6						歷	X		
1.6 2.0			13		1	-			+
The second secon			3			7			1 4
2.4					-	100	\mathcal{L}	10	
2.8		3				2.0			
3.2							-	/	
3.6					當住		1		
669.0									
285		1.6	78 ₾	× 0	9 ×	9	w @	n @	1 €
0.0	- man								
0.4 NO.8						_		-	-
NO.8					_			-	-
1.2 -								_	- 0
	24 28 32	36 0	45 9	0 12	15 18	0 :	225	270	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x [mm]	2.4 2.8 3.2		45 9	0 13	15 18 angle		225	270	315 360
0.0 0.4 0.8 1.2 1.6 2.0	2.4 2.8 3.2	3.6 0 Normal Range		0 13			225	270	
0.0 0.4 0.8 1.2 1.6 2.0 x [mm] Stereometric Analysis ONH Disc Area	1.795 mm²	Normal Range	pre	Schol (mm2)			225	270	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x [mm] Stereometric Analysis Otel Dise Area Cup Area	1.795 mm² 0.533 mm²	Normal Range 169 - 282 0.26 - 1.27	pre	Sicted (mm2) Lee 35.0%			225	270	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x [mm] Stereometric Analysis ONH Disc Area	1.795 mm²	Normal Range	pro	Schol (mm2)			2225	270	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x [mm] Steveometric Analysis 010H Dise Area Cup Area	1.795 mm ² 0.533 mm ² 1.263 mm ²	Normal Range 1 69 - 2 82 6 26 - 1 27 1 20 - 1 78	con pro-	Schol (min2) Lee 35.05 Lee 35.05 Lee 35.05	angle grown in	mpcost	Ing/kep	hragi/ted	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x [mm] Stereometric Analysis Othir Dies Area Cup Area Film Area Cup troin	1.795 mm ² 0.533 mm ² 1.263 mm ² 0.112 mm ²	Normal Range 1.69 - 2.82 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49	Moorf	Lee 35.0% Lee 35.0% Lee 35.0% Lee 35.0%	angle	mponer	makep mad limits (*)	ang/red	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x (mm) Storreometric Analysis Crist Disc Area Cup Area Cip Velorine Rim Velorine Cip	1.795 mm ² 0.532 mm ² 1.263 mm ² 0.125 mm ² 0.125 mm ² 0.125 mm ² 0.297 0.545	Normal Range 1.69 - 2.82 0.76 - 1.27 1.20 - 1.78 0.00 - 0.49 0.14 - 0.49 0.15 - 0.47 0.30 - 0.69	sup pre-	Lee 35.0% Lee 35.0% Lee 35.0% Lee 35.0%	angle	mponer	makep mad limits (*)	ang/red	315 360
0.0 0.4 0.8 1.2 1.6 2.0 x (mm) Stereometric Analysis Offer Dise Area Cup Fare Rim Area Cup Volume Rim Volume Linear Cupitie Rate Make Cup Dipel	1.795 mm ² 0.552 mm ² 1.263 mm ² 0.112 mm ² 0.295 mm ² 0.295 mm ²	Normal Range 1.69 - 2.82 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.16 - 0.47 0.30 - 0.69 0.14 - 0.38	Moorf	Lee 35.0% Lee 35.0% Lee 35.0% Lee 35.0%	angle	mponer	makep mad limits (*)	ang/red	315 360
OO 0.4 0.8 12 1.6 2.0 x (mm) Storreametric Analysis Crist Dise Area Cup Area Rim Area Cup Velorine Rim Velorine CupCitic Area Ratio Linear Cup Draph Rim Mess Cup Draph Mess Ration Cup Draph Mess Ration Cup Draph Mess Ration Cup Draph	1.795 mm ² 0.533 mm ² 1.763 mm ² 0.112 mm ² 0.295 mm ² 0.295 0.545 0.216 mm	Normal Range 1.69 - 2.82 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.25 - 0.47 0.36 - 0.69 0.14 - 0.39 0.46 - 0.90	Moorf (*) Heart vectoral	Lee 35.0% Lee 35.0% Lee 35.0% Lee 35.0%	angle	mponer	makep mad limits (*)	ang/red	315 360
OO O.4 O.8 1.2 1.6 2.0 x [mm] Stereometric Analysis CMH Diss Arms Cup Arts Rim Artss Cip Virlamin City Virlamin City Colorin Mee Cup Diss Aris Resis Limes Cup Diss Aris Resis Mee Cup Diss Risis Mee Cup Diss Aris Resis Aris Cup Diss Aris Cup Diss Aris Resis Aris Cup Diss Aris Cup Diss Aris Cup Diss Aris Resis Aris Cup Diss Aris Cup D	1.795 mm ² 0.533 mm ² 1.863 mm ² 0.126 mm ² 0.297 0.445 0.216 mm 0.600 mm	Mormal Range 1 69 - 282 0 36 - 1 27 1 10 - 1 78 0 00 - 0 49 0 15 - 0 47 0 36 - 0 69 0 14 - 0 38 0 46 - 0 90 - 0 - 27 - 0 99	Moort report	Sicted (rent2) Lee 35.0% Lee 35.0% Lee 35.0% Lee 35.0% Indicate agreement of the same state agreement of the same	angle	mponer Fifthin norm almostry 1996	20p Nup (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Cas effection has	315 380
OO 0.4 0.8 12 1.6 2.0 x (mm) Storeometric Assignis Crist Dise Area Cup Area Cup Volume Rim Volume CupClick Area Ratio Linear Cup Draph Mass Cup Draph Mass Cup Draph Mass Cup Draph Cup Stage Messure Fright Victorism	1.795 mm ² 0.532 mm ² 1.263 mm ² 0.112 mm ² 0.112 mm ² 0.295 mm ² 0.245 0.216 mm 0.600 mm 0.600 mm	Mormal Range 1.69 - 2.82 0.76 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.15 - 0.47 0.30 - 0.69 0.14 - 0.35 0.46 - 0.90 -0.27 - 0.90 0.30 - 0.47	Moorf Com	includ (mm2) Lee 35.0% Low 35.0% Low 35.0% Low 35.0% leids Classified represent distribution for the control of	angle	mponel Fifthin norm	mpNup mail limits (*)	trapine Casaficatorhas	315 360
Stereometric Analysis ONN Stereometric Analysis ONN Disc Area Cup Virlame Rim Area Cup Virlame Cup United Ratio Mare Cup Disc Ratio Mare Ratio Control Mare Ratio Ratio Ratio Mare Ratio Ratio Ratio Mare Ratio Ratio Mare Ratio Ratio Mare Ratio Ratio Mare Ratio	1.795 mm ² 0.533 mm ² 1.765 mm ² 1.765 mm ² 0.297 0.495 mm ² 0.297 0.415 0.216 mm 0.600 mm 0.402 mm 0.600 mm	Normal Range 1.69 - 2.62 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.35 - 0.69 0.14 - 0.39 0.45 - 0.90 -0.27 - 0.99 0.30 - 0.47 0.18 - 0.21	Moorf () Heart wecomit	Low 93.0% Low 93	angle photosis in the second control of the	in [1] William norm Within no	mpNup mail limits (*)	trapine Casaficatorhas	315 380
OO 0.4 0.8 12 1.6 2.0 x (mm) Storeometric Assignis Crist Dise Area Cup Area Cup Volume Rim Volume Cup Color Cup Cup Cup Cup Marea Cup Duptin	2.795 mm² 0.523 mm² 1.525 mm² 0.712 mm² 0.712 mm² 0.714 mm² 0.545 0.716 mm 0.527 mm 0.473 mm 0.520 mm² 1.224 mm²	Mormal Range 1.69 - 2.82 0.76 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.15 - 0.47 0.30 - 0.69 0.14 - 0.35 0.46 - 0.90 -0.27 - 0.90 0.30 - 0.47	Moorf	Low 95 8%	angle global in Grithe fication: W seelination (Opthe significantee) or in 6 Monet cor Papaliteen	mponer Fifthin norm strongy 1986 abuchtung or Gefaßber or Verande andblufun	mpkup mai limits (*)	template Classification lines Bervenifa sevicitier day V	315 380
Stereometric Analysis ONN Stereometric Analysis ONN Disc Area Cup Virlame Rim Area Cup Virlame Cup United Ratio Mare Cup Disc Ratio Mare Ratio Control Mare Ratio Ratio Ratio Mare Ratio Ratio Ratio Mare Ratio Ratio Mare Ratio Ratio Mare Ratio Ratio Mare Ratio	1.795 mm ² 0.533 mm ² 1.765 mm ² 1.765 mm ² 0.297 0.495 mm ² 0.297 0.415 0.216 mm 0.600 mm 0.402 mm 0.600 mm	Normal Range 1.69 - 2.62 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.35 - 0.69 0.14 - 0.39 0.45 - 0.90 -0.27 - 0.99 0.30 - 0.47 0.18 - 0.21	Moort	includ (renut) Lev 35.5% L	angle ploase is fication: W see Exame Continue fine Innerversaus	mponel Fifthin norm abuchtung or Gefaßbrun Verlande ien andblufun motolifen	mel limits (*) gen, V.a. h gen, HRT 1 in 6 Monate	begried Classification beautification beautificati	315 380
Stereometric Analysis ORM Stereometric Analysis ORM Disc Area Cup Volume Cup Area Cup Volume Cup Volume Cup Cup Cup Cup Mark Cup Depth Alexamous Cup Depth Cup Shape Mareaum Higher Underland Cumous Mark NRTL Thickness RMTL Crosts Stereoral Area RMTL Crosts Stereoral Area RMTL Crosts Stereoral Area	1.795 mm ² 0.533 mm ² 1.363 mm ² 0.127 mm ² 0.127 mm ² 0.297 0.645 0.216 mm 0.600 mm 0.600 mm 0.600 mm 0.1204 mm ² 0.472 mm 0.600 mm	Normal Range 1.69 - 2.62 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.35 - 0.69 0.14 - 0.39 0.45 - 0.90 -0.27 - 0.99 0.30 - 0.47 0.18 - 0.21	Moort	includ pents; Lew 93.9% Le	angle ploase is fication: W see Exame Continue fine Innerversaus	a [1] William nom Within nom Widelitation Widelitation	neal limits (*) 2 ppen, V.a. h surungen geg an HRT \(\) in 8 Monate R>L. Papilik	begried Classification beautification beautificati	315 360
Stereometric Analysis ORM Stereometric Analysis ORM Disc Area Cup Volume Cup Area Cup Volume Cup Volume Cup Cup Cup Cup Mark Cup Depth Alexamous Cup Depth Cup Shape Mareaum Higher Underland Cumous Mark NRTL Thickness RMTL Crosts Stereoral Area RMTL Crosts Stereoral Area RMTL Crosts Stereoral Area	1.795 mm ² 0.533 mm ² 1.363 mm ² 0.127 mm ² 0.127 mm ² 0.297 0.645 0.216 mm 0.600 mm 0.600 mm 0.600 mm 0.1204 mm ² 0.472 mm 0.600 mm	Normal Range 1.69 - 2.62 0.26 - 1.27 1.20 - 1.78 0.00 - 0.49 0.24 - 0.49 0.35 - 0.69 0.14 - 0.39 0.45 - 0.90 -0.27 - 0.99 0.30 - 0.47 0.18 - 0.21	Moort	includ pents; Lew 93.9% Le	angle fication: W see Fraction: (Optition fication: In 6 Monato for Prepallerary for Northern Action for Prepallerary for Action for Action for Prepallerary for Action for Ac	a [1] William nom Within nom Widelitation Widelitation	neal limits (*) 2 ppen, V.a. h surungen geg an HRT \(\) in 8 Monate R>L. Papilik	levvenifs serd levvenifs serd vensber der U Versinderung so.	315 360

Mean Height Contour Graph

Mean Height Contour Graph

Moorfields Regression Analysis

Stereometric Parameters

Stereometric parameters

Image Quality: Standard Deviation

< 10 µm Excellent 10-20 µm Very Good

20-30 µm Good

30-40 µm Acceptable

40-50 µm Try to improve

> 50 µm Poor Quality, documentation

only

Early Glaucoma Detection

Define the risk of a patient to develop glaucoma.

Qualitative

- Reflectivity of the NFL tissue
- Presence of NFL bundle defects
- Embedding of the vessels in the NFL tissue

Quantitative

- Disc size
- Rim configuration
- RNFL thickness
- Stereometric Parameters
- Multivariate Discriminant Analysis
- Moorfields Regression Analysis

Stereometric Parameters

Parameters	global	temporal	tmp/sup	tmp/inf	nasal	nsl/sup	nsl/inf	
disc area [mm²]	3.027	0.807	0.360	0.372	0.803	0.350	0.335	
cup area [mm²]	1.813	0.552	0.209	0.314	0.391	0.200	0.147	
rim area [mm²]	1.214	0.255	0.152	0.058	0.412	0.150	0.187	
cup/disc area ratio []	0.599	0.684	0.579	0.845	0.487	0.571	0.440	
rim/disc area ratio []	0.401	0.316	0.421	0.155	0.513	0.429	0.560	
cup volume [mm³]	0.786	0.311	0.167	0.072	0.079	0.125	0.031	
rim volume [mm³]	0.136	0.021	0.026	0.002	0.049	0.018	0.020	
mean cup depth [mm]	0.417	0.559	0.771	0.256	0.222	0.553	0.193	
maximum cup depth [mm]	1.066	1.081	1.335	0.531	0.773	0.966	0.475	
height variation contour [mm]	0.204	0.135	0.068	0.057	0.096	0.031	0.137	
cup shape measure []	-0.158	-0.073	-0.040	-0.089	-0.228	0.074	-0.109	
mean RNFL thickness [mm]	0.083	0.045	0.161	-0.007	0.087	0.131	0.123	
RNFL cross sectional area [mm²]	0.514	0.071	0.121	-0.005	0.137	0.099	0.091	
linear cup/disc ratio []	0.774	-	-	-	-	-	-	
maximum contour elevation [mm]	0.116	-	-	-	-	-	-	
maximum contour depression [mm]	0.320	-	-	-	-	-	-	
CLM temporal-superior [mm]	0.117	-	-	-	-	-	-	
CLM temporal-inferior [mm]	-0.052			-	-	-	-	
average variability (SD) [mm]	0.018	-	-	-	-	-	-	
reference height [mm]	0.300	-	-	-	-	-	-	
FSM discriminant function value []	-0.946	-	-	-	-	-	-	
RB discriminant function value []	-0.620	-	-	-	-	-	-	-
l								

Stereometric Analysis ONH		Normal Range
Disk Area	3.027 mm²	1.69 - 2.82
Cup Area	1.813 mm²	0.26 - 1.27
Rim Area	1.214 mm²	1.20 - 1.78
Cup Volume	0.786 cmm	0.00 - 0.49
Rim Volume	0.136 cmm	0.24 - 0.49
Cup/Disk Area Ratio	0.599	0.16 - 0.47
Linear Cup/Disk Ratio	0.774	0.38 - 0.69
Mean Cup Depth	0.417 mm	0.14 - 0.38
Maximum Cup Depth	1.066 mm	0.46 - 0.90
Cup Shape Measure	-0.158	-0.270.09
Height Variation Contour	0.204 mm	0.30 - 0.47
Mean RNFL Thickness	0.083 mm	0.18 - 0.31
RNFL Cross Sectional Area	0.514 mm²	0.95 - 1.61
Reference Height	0.300 mm	
Topography Std Dev.	11 µm	
	•	

Detection of Glaucomatous Damage

Compare stereometric parameters with normal values (Top 5) Reinhard O.W. Burk, Heidelberg, 2000

Parameter	normal	early	moderate	advanced
Disc Area [mm²]	2.257 ± 0.563	2.346 ± 0.569	2.310 ± 0.554	2.261 ± 0.416
Cup Area [mm²]	0.768 ± 0.505	0.953 ± 0.594	1.051 ± 0.647	1.445 ± 0.562
Rim Area [mm²]	1.489 ± 0.291	1.393 ± 0.340	1.260 ± 0.415	0.817 ± 0.334
Cup Volume [mm³]	0.240 ± 0.245	0.294 ± 0.270	0.334 ± 0.318	0.543 ± 0.425
Rim Volume [mm³]	0.362 ± 0.124	0.323 ± 0.156	0.262 ± 0.139	0.128 ± 0.096
Cup/Disk Area Ratio	0.314 ± 0.152	0.380 ± 0.179	0.430 ± 0.203	0.621 ± 0.189
Horizontal Cup/Disk Ratio	0.567 ± 0.200	0.623 ± 0.221	0.658 ± 0.226	0.808 ± 0.185
Vertical Cup/Disk Ratio	0.460 ± 0.206	0.538 ± 0.214	0.573 ± 0.226	0.756 ± 0.194
Mean Cup Depth [mm]	0.262 ± 0.118	0.279 ± 0.115	0.289 ± 0.130	0.366 ± 0.182
Maximum Cup Depth [mm]	0.679 ± 0.223	0.680 ± 0.210	0.674 ± 0.249	0.720 ± 0.276
Cup Shape Measure	-0.181 ± 0.092	-0.147 ± 0.098	-0.122 ± 0.095	-0.036 ± 0.096
Height Variation Contour [mm]	0.384 ± 0.087	0.364 ± 0.100	0.330 ± 0.108	0.256 ± 0.090
Mean RNFL Thickness [mm]	0.244 ± 0.063	0.217 ± 0.076	0.182 ± 0.086	0.130 ± 0.061
RNFL Cross Sectional Area [mm²]	1.282 ± 0.328	1.155 ± 0.396	0.957 ± 0.440	0.679 ± 0.302

Physiologic Variability

Rim area

normal
early
moderate
advanced

Focusing Ophthalmology on Reframing Glaucoma Evaluation

TM

FORGE

Optic Disc/RNFL Examination "The 5Rs"

- 1 Observe the scleral Ring to identify the limits of the optic disc and its size
 - 2 Identify the size of the Rim
 - 3 Examine the Retinal nerve fiber layer
 - 4 Examine the Region of parapapillary atrophy
 - 5 Look for Retinal and optic disc hemorrhages

Applying FORGE & Jonas to HRT

HRT Analysis in 60 seconds

William Control of the Control of th

FORGE & Jonas

FORGE: Observe the scleral Ring to identify the limits of the optic disc and its size

Jonas: Observe size and shape of the optic disk

Disc Area

Total area enclosed by the contour line

Disc Size & Shape

Will be a second of the second

FORGE & Jonas

FORGE: Identify the size of the Rim (ISNT Rule)

Jonas: Identify size, shape, and pallor of the neuroretinal rim

Stereometric Parameters - Rim Area

Area enclosed by the contour line and located above the reference plane. The rim is displayed in green (stable) and blue (sloping).

Rim Configuration

Parameters	global	temporal	tmp/sup	tmp/inf	nasal	nsl/sup	nsl/inf
disc area [mm²]	3.027	0.807	0.360	0.372	0.803	0.350	0.335
cup area [mm²]	1.813	0.550	0.200	0.214	0.304	0.200	0.147
rim area [mm²]	1.214	0.255	0.152	0.058	0.412	0.150	0.187
cup/disc area ratio []	0.599	U.684	0.579	0.845	U.487	0.571	0.440

ISNT Rule

I = 0.250 S = 0.300 N = 0.412 T = 0.255

Irregular rim configuration

	Parameters	global	temporal	tmp/sup	tmp/inf	nasal	nsl/sup	nsl/inf
•	disc area [mm²]	2.011	0.518	0.224	0.272	0.533	0.257	0.208
۱	cup area [mm²]	0.840	0.271	0.005	0.002	0.250	0.100	9.943
•	rim area [mm²]	1.171	0.247	0.140	0.190	0.277	0.154	0.165
	cup/disc area ratio [1]	0.418	11.524	0.378	II.SID	11.481	11.41111	11.708

$$I = 0.355 S = 0.294 N = 0.277 T = 0.247$$

Regular rim configuration

Nasal rim includes vessels!

Rim Volume

 Volume enclosed by the contour line and located above the reference plane

Will have been sent to the sen

FORGE & Jonas

FORGE: Examine the Retinal nerve fiber layer

Jonas: Examine visibility of the retinal nerve fiber layer (RNFL)

WAR AND WAR

Qualitative Analysis: RNFL reflectivity

Healthy nerve fibers show good reflectivity

Reduced reflectivity in diffuse nerve fiber loss

NFL bundle defect confirmed by Moorfields classification

Height Variation Contour

 Height difference between the most elevated and most depressed point of the contour line

FORGE & Jonas

FORGE: Examine the Region of parapapillary atrophy

Jonas: Examine occurrence, size, configuration, and location of parapapillary chorioretinal atrophy

Examine the Region of parapapillary atrophy

FORGE & Jonas

FORGE: Look for Retinal and optic disc hemorrhages

Jonas: Look for presence and location of splinter-shaped hemorrhages

Flicker-Test can show hemorraghes

Configuration of the optic cup

Vertical pronunciation is a risk factor

- The Cup Shape Measure (CSM) is a unique and powerful indicator that the walls of the cup are changing as a result of early glaucomatous damage.
- Discriminates normal from early glaucoma with high diagnostic precision.

Cup Shape Measure

Normal optic nerve

Early glaucoma

Depth of the optic cup

Maximum depth of optic disc cupping (red area)

Depth of the optic cup

 Mean depth of optic disc cupping (red and blue area)

Cup/Disc Area Ratio

Ratio between <u>area</u> of disc cupping and <u>area</u>

of optic disc

Vessels: Embedding, Trunk, Diameter

Reflectance image reveals focal NFL defect

Detection of Glaucomatous Damage

Multivariate Discriminant Analysis (selection)

source	N norm/ glaucoma	VF mean deviation	HRT parameters	sensitivity	specificity
FSM → lester et al., Ophthalmology 1997;104:545-548 (FSM)	60/93	-8.3 dB average	HVC, CSM, RV	64.7% - 83.3%	83.3% - 88.9%
Uchida et al., Nippon Ganka Gakkai Zasshi 1998;102:333-339	-/30	-3.7 dB average	HVC, CSM, RV	80%	83%
Bathija et al., J Glaucoma 1998;7:121-127	49/50	> -10 dB	HVC, RNFLT, CSM, RA	71.4% - 94.4%	81.8% - 92.6%
RB → Reinhard O. W. Burk, Perimetry Update 1998/1999; 463-474	78/58	<-5dB	CSM, CLM Independent from reference plane!	74.1%	85.9%
Gundersen et al., Acta Ophthalmol Scand 2000;78:137-141	153/75	-8.2 dB average	RDAR, RV, RNFLCA	70.7%	95.4%
lester et al., Br J Ophthalmol 2000;84:464-468	194/161	-7.5 dB average	HVC, RNFLT, CSM, RA	84.2% - 90.9%	60.0% - 97.0%
Zangwill et al., Arch Ophthalmol 2001;119:985-993	50/41	-5.1 dB average	MHC - ni	81%	86%
Mardin et al., Br J Ophthalmol 1999;83:299- 304	50/102	pre-perimetric	RA, RV, CV, CA, RNFLT, CSM	42.2%	95.0%
Bowd et al., IOVS 2002; 43:3444-3454	189/108	-6.1dB	(multiple)	88%	90%

Multivariate Discriminant Analysis

Predefined Segments: HRT II G.	4/13/99	(-1) OD Bas	eline Exam	tilted/relative				?×
		,						—
Parameters	global	temporal	tmp/sup	tmp/inf	nasal	nsl/sup	nsl/inf	
disc area [mm²]	3.381	0.849	0.413	0.432	0.844	0.432	0.412	
cup area [mm²]	2.100	0.653	0.293	0.235	0.508	0.310	0.101	
rim area [mm²]	1.282	0.195	0.120	0.197	0.337	0.122	0.311	
cup/disc area ratio []	0.621	0.770	0.710	0.544	0.601	0.717	0.246	
rim/disc area ratio []	0.379	0.230	0.290	0.456	0.399	0.283	0.754	
cup volume [mm³]	0.778	0.202	0.123	0.080	0.196	0.145	0.032	
rim volume [mm³]	0.194	0.016	0.017	0.031	0.043	0.019	0.069	
mean cup depth [mm]	0.394	0.368	0.484	0.352	0.394	0.536	0.248	
maximum cup depth [mm]	0.796	0.740	0.761	0.791	0.806	0.847	0.750	
height variation contour [mm]	0.371	0.092	0.092	0.232	0.263	0.021	0.077	
cup shape measure []	-0.018	-0.001	0.170	-0.093	-0.031	0.103	-0.146	
mean RNFL thickness [mm]	0.182	0.072	0.207	0.232	0.142	0.210	0.384	
RNFL cross sectional area [mm²]	1.188	0.118	0.167	0.188	0.230	0.175	0.313	
linear cup/disc ratio []	0.788		-		-	-	-	
maximum contour elevation [mm]	0.078	-	-		-	-	-	
maximum contour depression [mm]	0.449	-	-	-	-	-	-	
CLM temporal-superior [mm]	0.135		-		-	-	-	
CLM temporal-inferior [mm]	0.159	-	-	-	-	-	-	
average variability (SD) [mm]	0.025	-	-	-	-	-	-	
	 ,	~ 4~		-	-	-		
liscriminant function valu	-2,1	048	-	-	-	-		
			-	-	-	-		

Detection of Glaucomatous Damage

Moorfields Regression Analysis

Wollstein et al., Ophthalmology 1998;105:1557-1563

normal

outside normal limits

Moorfields Regression Analysis

CUP

RIM

OHTS ancillary study: Hazard Ratios

Table 3. Univariate and Multivariate Hazard Ratios and 95% Confidence Intervals (CIs) for the Development of POAG (Average of the Eyes)

	Hazard Ratio (95% CI)							
	Univariate	Multivariate*						
CSLO measures								
Disc area (per 0.4 mm² greater)	0.84 (0.58-1.20)	0.86 (0.57-1.30)						
Cup area (per 0.3 mm² greater)	1.22 (0.96-1.55)	1.21 (0.96-1.53)						
Cup area-to-disc area (per 0.1 greater)	1.23 (1.00-1.50)	1.25 (1.02-1.53)						
Mean cup depth (per 0.1 mm greater)	1.58 (1.14-2.20)	1.60 (1.15-2.22)						
RNFL thickness (per 0.1 mm greater)	0.60 (0.34-1.06)	0.66 (0.35-1.23)						
Standard deviation of mean image (per 6 µm greater)	1.15 (0.92-1.43)	1.04 (0.80-1.37)						
Cup shape (per 0.1 greater)	1.24 (0.78-1.97)	1.02 (0.62-1.67)						
Cup volume below surface (per 0.1 mm³ greater)	1.11 (0.96-1.28)	1.10 (0.97-1.25)						
Rim area (per 0.2 greater)	0.58 (0.43-0.79)	0.57 (0.42-0.78)						
Rim area/disc area (per 0.1 greater)	0.75 (0.60-0.94)	0.76 (0.62-0.93)						
Reference height (per 0.1 mm greater)	1.42 (1.04-1.93)	1.49 (1.03-2.17)						
Corneal curvature (per 0.2 mm greater)	1.16 (0.90-1.49)	1.03 (0.79-1.36)						
RNFL cross-section (per 0.3 mm² greater)	0.68 (0.49-0.95)	0.72 (0.48-1.06)						
Mean height contour (per	2.59 (1.69-3.98)	2.69 (1.62-4.49)						
0.1 mm greater) Rim volume above reference (per 0.1 mm ³	0.63 (0.45-0.87)	0.65 (0.47-0.91)						
greater) Cup volume below reference (per 0.1 mm ³ greater)	1.24 (1.02-1.52)	1.20 (1.01-1.43)						
HRT classification 1 (per 1 unit greater)	0.72 (0.59-0.89)	0.75 (0.62-0.92)						

Table 3. Univariate and Multivariate Hazard Ratios and 95% Confidence Intervals (CIs) for the Development of POAG (Average of the Eyes) (cont)

	Hazard Ratio (95% CI)						
	Univariate	Multivariate*					
CSLO indexes							
HRT classification, outside normal limits vs within normal limits	2.47 (1.31-4.65)	2.54 (1.31-4.90)					
MRA (outside normal limits vs within normal limits)							
Overall	2.72 (1.19-6.21)	2.39 (1.02-5.62)					
Global	5.64 (1.94-16.44)	3.37 (1.13-9.99)					
Nasal	1.99 (0.74-5.37)	1.59 (0.48-5.24)					
Nasal inferior	4.44 (1.77-11.12)	4.19 (1.61-10.91)					
Nasal superior	1.97 (0.43-8.96)	0.72 (0.11-4.63)					
Temporal	3.28 (0.82-13.18)	2.48 (0.66-9.22)					
Temporal inferior	5.02 (1.53-16.51)	5.80 (1.60-21.00)					
Temporal superior	8.88 (2.58-30.56)	3.28 (0.98-10.98)					
OHTS predictive factors							
Age (per decade)	1.27 (0.92-1.76)	NA					
History of heart disease	4.25 (1.63-11.08)	NA					
IOP (per mm Hg)	1.11 (0.99-1.23)	NA					
CCT (per 40 µm thinner)	2.14 (1.44-3.18)	NA					
PSD (per 0.2 dB greater)	1.15 (0.93-1.43)	NA					
Horizontal cup-disc ratio (per 0.1 larger)	1.27 (1.09-1.49)	NA					
Vertical cup-disc ratio (per 0.1 larger)	1.40 (1.16-1.68)	NA					

Abbreviations: CCT, central corneal thickness; CSLO, confocal scanning laser ophthalmoscopy; HRT, Heidelberg Retina Tomograph; IOP, intraocular pressure; MRA, Moorfields Regression Analysis; NA, not applicable; OHTS, Ocular Hypertension Treatment Study; POAG, primary open-angle glaucoma; PSD, pattern standard deviation; RNFL, retinal nerve fiber layer.

*Multivariate model contains baseline age, IOP, PSD, CCT, and history of heart disease, with medication status as a time-dependent covariate. One hundred twelve eyes were excluded from the multivariate analyses because of missing CCT values. Temporal MRA classifications have highest predictive value!

Mathematical Model

Normal ONH

Glaucomatous ONH

Classifications Parameter

ONH:

- Slope
- Depth
- Width

Peripapillary surface:

Horizontal and vertical curvature

topographisches Modell

Model – normal

Model - glaucomatous

Cup shape measure

 Frequency distribution

Normal ONH

Abnormal ONH

The Cup Shape changes from a negative slope towards a more positive slope with increasing glaucoma.

GPS

Normative Databases

now	disc size	new	disc size		CUP	RIM	RFNL
743 eyes	1.1 - 4.2	743 eyes	1.1 - 4.2				
153 eyes	2.2 - 2.5	153 eyes	2.2 - 2.5				
136 eyes	1.2 - 2.9	136 eyes	1.2 - 2.9				
					1 +	1	· j -
112 eyes	1.2 - 2.8	733 eyes	1.0 – 3.6				
-	-	215 eyes	1.4 – 3.4				
-	-	104 eyes	0.9 – 4.1				
					1 +	1 +	· 1 +
-		146 eyes	1.2 – 3.5				
-		49 eyes	1.2 - 3.7				
1144		2279					
	743 eyes 153 eyes 136 eyes 112 eyes - -	743 eyes 1.1 - 4.2 153 eyes 2.2 - 2.5 136 eyes 1.2 - 2.9	743 eyes 1.1 - 4.2 743 eyes 153 eyes 2.2 - 2.5 153 eyes 136 eyes 1.2 - 2.9 136 eyes 112 eyes 1.2 - 2.8 733 eyes - - 215 eyes - - 104 eyes - 146 eyes - 49 eyes	743 eyes 1.1 - 4.2 743 eyes 1.1 - 4.2 153 eyes 2.2 - 2.5 136 eyes 1.2 - 2.9 136 eyes 1.2 - 2.9 136 eyes 1.2 - 2.9 112 eyes 1.2 - 2.8 733 eyes 1.0 - 3.6 215 eyes 1.4 - 3.4 - 104 eyes 0.9 - 4.1 146 eyes 1.2 - 3.5 49 eyes 1.2 - 3.7			

^{**}Refractive Error -5 to +5

Applying FORGE & Jonas to HRT

HRT Early Diagnosis in 60 seconds:

- 1. Good reflectivity?
- 2. Disc size (micro, normal, macro)
- 3. Configuration of cup (horizontal or vertical)
- 4. Configuration of rim (ISNT rule fulfilled?)
- 5. Symmetric double hump configuration of contour line height profile
- 6. Contour line height profile crosses mean height of retina?
- 7. Rim Volume: $\sim 0.3 \text{ mm}^3$
- 8. CSM: -0,2 for normal ONHs -0,1 for macropapillas
- 9. FMS & RB should be positive FMS negative/RB positive is a sign for macropapillas
- 10. Check MRA temporal (less important in macro- or micropapillas)
- 11. Check GPS global (less important in macro- or micropapillas)

Heidelberg Retina Tomograph GPS Report

DOM: 19.50 Presmination: Mar/22/2001 Gender: female Ethericity: African origin

OD

Quality: Very good (50 14 µm)

Pocuse 2.00 opt. Operator:--

Initial Report

Quality: Very good (SD 13 µm)

Focus: 2.00 dpt Operator.—

OS

Glaucoma Probability Score (GPS)

Crutside normal fimits.

gehal.	Section 2	trap/op	teater.	1000	redten.	and/of	Eminer	and the	Section .	September 1	troplet.	poolel	- self-tree	1,000
99	1643	1186	1000	100	1954	130	Charma puts.	9.87	(80)	107	7000	(1086)	11169	6,95
0.08	424	420	6.0	30,27	30.00	0.0	Developmen	940	1.40	0/0	9.00	101	3.77	1679
477	836	100	100	617	3.42	9.86	Copyridate (man (f)	8.00	5-65	8.99	0.00	9.42	3/12	836
309		-		-		_	Cap days pane	676		-				
144							AURINE CON.	100						
100			-				NAMES OF	0.00						
							***************************************			10000		1000	100	100

Districts normal entire WATER BERTS & LONG guine temporar tripring terpost Classification Spring Countries on Classification

Classon s Principity from Classification

Comments

Progression in Glaucoma

- Physiologic variability of individual eyes is high.
- Difficult to classify eyes as normal or glaucoma based on a single test.
- Glaucoma is a progressive disease.

Normative Databases

- RNFL varies in the normal population 600,000 to 1.4 million fibers.
- Great variability between normal optic disc sizes, shapes and appearance makes classification of individual eyes based on one parameter difficult or impossible when looking at one point in time.

Normative Databases

- Single scans are unreliable.
- Overlap of normal precludes the ability to diagnose.
- Normative Databases are indicators and not specific enough for definitive diagnosis.
- The patient is his own best "normal".
- Monitoring change over time is therefore the issue in glaucoma.

The Single Test Dilema

The Single Test Dilema

People in the statistically "normal range" may undergo optic disc changes over time and yet still remain within the normal range on the basis of any single exam alone.

The Single Test Dilema

This patient could have started with a full set of nerve fibers.

Optic Disc Change is the Primary Indicator

- OHTS reports 55% of subjects reached endpoint (POAG) based on changes in the optic disc only.
- A further 10% of subjects had concurrent optic disc and visual fields changes.
- Only 35% of glaucoma was found by visual field changes.

HRT Longitudinal Studies

Glaucomatous Progression

- Stereometric Parameters.
- Topographic Change Analysis (TCA).

Progression requires:

- Baseline + 2 Follow-up exams.
- Images automatically aligned to each other.

When is a Parameter Change Significant?

Rule:

If average normalized parameter value decreases by more than ~ -0.05

in 2 consecutive exams: suspected progression

in 3 consecutive exams: **confirmed** progression

Topographic Change Analysis (TCA)

- Independent of Reference Plane.
- Independent of Contour Line.
- Compares Mean Topography images.
- Calculated automatically.

Presentation of follow-up exams

Absolute Change

Statistically
Significant Change

Statistically
Significant and
Reproducible*
Change.

*reproduced in 2 or 3 or 4 follow-up exams

Presentation of follow-up exams

Presentation of follow-up exams

Topography

Reflectance

Difference Maps

Indicate height changes of the

ONH and retinal surface measured in each follow-up compared to baseline exam. Show *overall* change irrespective of significance of change.

Change Probability Map

- Super Pixels (4 x 4 pixels).
- Analysis of Variance (F-test).
- Error Probability (p):
 Probability that height change occurs by chance alone.
- Super Pixel in red or green indicates a significant change (p < 0.05).
- Red = Significant Depression
- Green = Significant Elevation

Cluster & Pixel Analysis

- Cluster Volume = Depth of Change.
- Cluster Area = Area of Change.
- Change = Local change in surface height measured in microns at the location selected.

NOTE.

A negative value (-) denotes an elevation in the follow-up compared to baseline.

Pooled Standard Deviation

- The combined local variability of baseline and follow-up exam in microns.
- Lower numbers = consistent quality.

Error Probability

Low number = true change more likely.

Cluster Volume: 16.32 [10e-3 mm²]

Cluster Area: 0.16 [mm²]

Change: 202 [µm]

Pooled std. dev.: 48 [µm]

Error probability: 0.003

New Printout – TCA Cluster Analysis

Frequency of Examinations

- Time determines progression of disease.
- Disease cannot be shown simply by doing more exams.
- Try to get more follow-up exams early to establish rate of progression.
- Follow current Visual Fields practice.
 - High risk patients every 3-4 months.
 - High risk = Race, age, family history, IOP increases, thin cornea.
 - Low risk patients annually.

TCA – Early Start

- Increase the number of exams in order to start monitoring for change earlier.
- 1 high quality baseline and 2 follow-up exams of the <u>same</u> quality at 2nd visit.